Introduction

Upon receipt of shipment:

• Compare shipment with packing slip. Contact factory regarding discrepancies.

• Inspect packages for shipping damage. Contact carrier regarding damage.

• Accessories may be shipped loose. See accessory instructions for installation.

The Dorner Limited Warranty applies.

Dorner has convenient, pre-configured kits of Key Service Parts for all conveyor products. These time saving kits are easy to order, designed for fast installation, and guarantee you will have what you need when you need it. Key Parts and Kits are marked in the Service Parts section of this manual with the Performance Parts Kits logo.

Dorner reserves the right to make changes at any time without notice or obligation.
Warnings - General Safety

WARNING

The safety alert symbol, black triangle with white exclamation, is used to alert you to potential personal injury hazards.

DANGER

SEVERE HAZARD!

KEEP OFF CONVEYORS. Climbing, sitting, walking or riding on conveyor will cause severe injury.

EXPLOSION HAZARD!

- **DO NOT OPERATE CONVEYORS IN AN EXPLOSIVE ENVIRONMENT.** The electric gearmotor generates heat and could ignite combustible vapors.
- Failure to comply will result in death or serious injury.

DANGER

- **ELECTRICAL HAZARD!**
 - **LOCK OUT POWER BEFORE WIRING.** Exposure to high voltage current can cause death or serious injury.

WARNING

- **Controller must be properly grounded.** Failure to properly ground controller may cause injury to personnel.

DANGER

- **Hazardous voltage will cause severe injury or death.** **LOCKOUT POWER BEFORE WIRING.**

WARNING

- **Moving parts can cut or crush. Keep hands clear.** **INSTALL GUARDING PRIOR TO OPERATION.**

DANGER

- **Exposed moving parts can cause severe injury.** **DO NOT ATTEMPT ADJUSTMENTS WITH CONVEYOR RUNNING.** **LOCK OUT POWER** before removing guards or performing maintenance.

WARNING

- **Moving parts can cut or crush.** **DO NOT exceed 3” high fixtures.**

Servo Drive and Controller

851-732 Rev. A

Dorner Mfg. Corp.
Product Description

Controller Description

The “stand-alone” model is designed to be used with Dorner’s accessories (push buttons, sensors). The controller is fully assembled and functional – no internal wiring is necessary Figure 1.

Typical Components:

1. Programming Port
2. Main Power Disconnect Switch
3. Power ON Light
4. Power Cord
5. Feedback Cord
6. Motor Power Cord
7. PL1 Input
8. PL2 Input
9. PL3 Input
10. PL4 Input

Conveyor Description

Refer to Figure 2 for typical components.

Typical Components:

1. Conveyor
2. Gearmotor Mounting Package
3. Gearmotor
4. Guiding & Accessories
5. Mounting Brackets
6. Return Rollers
7. Support Stand
8. Drive End
9. Idler/Tension End
Controller

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Dorner Servo Drive P/N</th>
<th>Kollmorgen Servo Drive P/N</th>
<th>Input Volts</th>
<th>Input Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>75M-S1-11-3</td>
<td>826-622</td>
<td>AKD-P00306-NAAN-0000</td>
<td>115</td>
<td>12</td>
</tr>
<tr>
<td>75M-S2-11-3</td>
<td>826-622</td>
<td>AKD-P00306-NAAN-0000</td>
<td>230</td>
<td>5</td>
</tr>
</tbody>
</table>

Power Requirements

All below at 50/60 Hz:

<table>
<thead>
<tr>
<th>Power Requirement</th>
<th>115V Stand Alone</th>
<th>115V External Control</th>
<th>230V Stand Alone</th>
<th>230V External Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
<td>75M-S1-11-3</td>
<td>75M-S2-11-3</td>
<td>75M-S1-21-3</td>
<td>75M-S2-21-3</td>
</tr>
<tr>
<td>Input Volts</td>
<td>115</td>
<td>115</td>
<td>230</td>
<td>230</td>
</tr>
<tr>
<td>Input Phase</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Input Hz</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Continuous Amps Out</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Peak Amps Out</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Continuous Watts</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
</tr>
</tbody>
</table>

Gearmotor Compatibility

<table>
<thead>
<tr>
<th>Dorner Series</th>
<th>Dorner Part No.</th>
<th>Ratio</th>
<th>Rated Torque (in-lb)</th>
<th>Rated RPM @115V</th>
<th>Rated RPM @230V</th>
<th>Motor Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2200</td>
<td>22M004PR2B1KW</td>
<td>4:1</td>
<td>79</td>
<td>115</td>
<td>500</td>
<td>Kollmorgen AKM Series</td>
</tr>
<tr>
<td>3200</td>
<td>32M008HR2B1KW</td>
<td>8:1</td>
<td>130</td>
<td>187</td>
<td>312</td>
<td>Kollmorgen AKM Series</td>
</tr>
</tbody>
</table>
Installation

Required Tools

- Hex key wrenches: 4 mm, 5 mm
- Wrenches 8 mm, 10 mm
- Flat-blade screwdriver
- Torque wrench

Controller Mounting

DANGER

SEVERE HAZARD!
Hazardous voltage will cause severe injury or death. LOCKOUT POWER BEFORE WIRING.

1. Attach controller (Figure 3, item 1) to conveyor with two drop-in tee bars (Figure 3, item 2) and capscrews (Figure 3, item 3).

2200 Series Bottom Flush Mount Servo Drive

WARNING

Exposed moving parts can cause severe injury. LOCK OUT POWER before removing guards or performing maintenance.

1. Remove two M6 screws (Figure 4, item 1) from output shaft side of conveyor.

Servo Drive and Controller

Dorner Mfg. Corp. 6 851-732 Rev. A
Installation

2. Attach servo and mount assembly (Figure 6, item 2) to side of conveyor, with bolt head (Figure 6, item 3) inside of hole (Figure 6, item 4).

3. Secure servo and mount assembly (Figure 7, item 1) onto conveyor with two M6 screws (Figure 7, item 2). Tighten M6 screws to 60 in-lb (7 Nm).

4. Install key (Figure 8, item 1).

5. Install driven pulley (Figure 8, item 2) onto shaft.

NOTE
You can attach mount assembly either:
- Flush - using two top holes (Figure 5, item 1), with shaft (Figure 5, item 2) in top hole (Figure 5, item 3) and low head capscrew (Figure 5, item 4) in hole (Figure 5, item 5).
- Turned 10° for bottom mount orientation using lower two holes (Figure 5, item 6) with shaft (Figure 5, item 2) in bottom hole (Figure 5, item 7) and low head capscrew (Figure 5, item 4) in hole (Figure 5, item 8).

WARNING
Drive shaft keyway may be sharp. HANDLE WITH CARE.
Installation

6. Using a straight-edge, be certain that driven pulley is flush with drive pulley (Figure 9, item 1). Tighten two set screws (Figure 9, item 2) onto shaft.

![Figure 9]

7. Install belt (Figure 10, item 1) onto drive pulley (Figure 10, item 2) and driven pulley (Figure 10, item 3).

![Figure 10]

8. Loosen two M8 screws (Figure 11, item 1).
9. Use a hex wrench (Figure 10, item 4) to turn tensioner adjustment fitting (Figure 10, item 5) to tighten belt.
10. Tighten two M8 screws (Figure 11, item 1) to secure belt position.
11. Install cover (Figure 12, item 1) with four M6 screws (Figure 12, item 2).

![Figure 11]

![Figure 12]
3200 Series Side Mount Servo Drive

WARNING

Exposed moving parts can cause severe injury. LOCK OUT POWER before removing guards or performing maintenance.

1. Remove bottom M8 screw (Figure 13, item 1) from side of conveyor.

2. Install anti-rotation adjustable rod (Figure 14, item 1) onto conveyor with tube spacer (Figure 14, item 2) and M8 low head screw (Figure 14, item 3).

3. Install two spacer plates (Figure 15, item 1) with four M6 hex head screws (Figure 15, item 1).

4. Attach servo assembly (Figure 16, item 1) onto shaft (Figure 16, item 2).

5. Raise servo motor and rotate anti-rotation adjustable rod (Figure 16, item 3) fully upward, and then lower servo assembly.

Figure 13

Figure 14

Figure 15

Figure 16
Installation

6. Secure top of anti-rotation adjustable rod (Figure 17, item 1) onto bracket (Figure 17, item 2) on servo motor assembly with socket head bolt (Figure 17, item 3).

7. Tighten six hex head screws (Figure 18, item 1) to secure assembly onto shaft.

8. Install cover.

Wiring

DANGER
Hazardous voltage will cause severe injury or death.
LOCKOUT POWER BEFORE wiring.

WARNING
Exposed moving parts can cause severe injury.
LOCK OUT POWER before removing guards or performing maintenance.

WARNING
Controller must be properly grounded. Failure to properly ground control box may cause injury to personnel.

NOTE
For electrical wiring or troubleshooting, refer to information provided by controller manufacturer.

1. Make the input power connections through the line connection cord grip. Refer to the manufacturer’s manual for terminations inside the VFD controller.
Setting Up Your Application
To properly set up your servo controller for your conveyor, follow procedures below.

1. Determine Your Application Parameters and Hardware Required
(See “1. Determining your Application Parameters and Hardware Required” on page 12.)
 I. Incremental Index
 II. Incremental Index – Auto Cycling
 III. Absolute Index
 IV. Registration Index
 V. Electronic Gearing
 VI. Jog/Continuous Run
 VII. Multi-Task Select

2. Wiring Options
(See “2. Wiring Options” on page 21.)
 I. Stand Alone Controller, 75M-S1-x1-3
 II. Externally-Controlled, 75M-S2-x1-3
 III. Sensors

3. Establish Communications with the Drive
(See “3. Establish Communications with the Drive” on page 31.)
 I. Configure the drive for the type of IP addressing
 II. Connect the Drive to the Programming PC
 III. Configure the IP settings in the Programming PC
 IV. Check the PC’s Taskbar

4. Run the Workbench Software
(See “4. Run the Workbench Software” on page 34.)
 I. Load the Workbench software onto the PC
 II. Power up the controller
 III. Connect to the drive
 IV. Configure the Parameters

5. Establishing Your Home Method
(See “5. Establishing your Homing Methods” on page 42.)
 I. Homing Methods
 II. Programming the Homing Method

6. Setting Digital Inputs and Outputs
(See “6. Setting Digital Inputs and Outputs” on page 45.)

7. Loading Your Motion Profile
(See “7. Loading your Motion Profile” on page 46.)
 I. Load Pre-Configured Tasks
 II. Customize Tasks/Start New

8. Tuning the Gearmotor/Drive
(See “8. Tuning the Gearmotor/Drive” on page 48.)

9. Running Your Application
(See “9. Running your Application” on page 49.)

10. Save Application File
(See “10. Save Application File” on page 49.)
Operation

1. Determining your Application Parameters and Hardware Required

The Dorner Servo Package can be programmed to move in virtually any application, move or profile. Provided is detailed instructions for typical application moves including:

- I. Incremental Index (See “I. Incremental Index” on page 12.)
- II. Incremental Index – Auto Cycling (See “II. Incremental Index – Auto Cycling” on page 13.)
- III. Absolute Index (See “III. Absolute Index” on page 15.)
- IV. Registration Index (See “IV. Registration Index” on page 16.)
- V. Electronic Gearing (See “V. Electronic Gearing” on page 17.)
- VI. Jog/Continuous Run (See “VI. Jog/Continuous Run” on page 19.)
- VII. Multi-Task Select (See “VII. Multi-Task Select” on page 20.)

For most applications, you will need to calculate/determine the following information. Noting them in the space provided will aide in programming the drive. If assistance is needed in determining this parameter, contact factory.

<table>
<thead>
<tr>
<th>Motion Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Move Distance</td>
<td>inches</td>
</tr>
<tr>
<td>Move Speed</td>
<td>inches/second</td>
</tr>
<tr>
<td>Acceleration</td>
<td>inches/second²</td>
</tr>
<tr>
<td>Deceleration</td>
<td>inches/second²</td>
</tr>
</tbody>
</table>

NOTE

The following motion profile examples include detail on parameter and I/O settings. This data will be required in later steps.

I. Incremental Index

Description

In this mode, a conveyor is commanded to move a fixed distance. A switch initiates the move.

Terms/Definitions

Index distance: Distance conveyor travels from start to stop

Required Inputs

<table>
<thead>
<tr>
<th>Device</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiate Index Switch</td>
<td>PL2</td>
</tr>
<tr>
<td></td>
<td>Externally-Controlled Option</td>
</tr>
<tr>
<td></td>
<td>terminal block - IN3</td>
</tr>
</tbody>
</table>

Special Parameter Settings

Home

(See “II. Programming the Homing Method” on page 44.)

Digital I/O

<table>
<thead>
<tr>
<th>Digital Input</th>
<th>Mode</th>
<th>Param</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN 3</td>
<td>2 - Start Motion Task</td>
<td>0</td>
<td>Act. High</td>
</tr>
</tbody>
</table>
Motion Tasks:
- Task Number = 0
- Profile = Trapezoidal
- Type = Relative to previous target position
- Position = Index distance
- Velocity = Speed conveyor travels at
- Acceleration = rate conveyor gets up to speed
- Deceleration = rate conveyor slows down

Operation
- Reset Emergency Stop (STO) circuit
- Enable drive
- Apply “Initiate Index” signal to begin indexing.
 - Conveyor executes Motion Task

II. Incremental Index – Auto Cycling

Description
In this mode, a conveyor repeatedly moves a fixed distance with programmable dwell. The process starts automatically after the initiate switch is pressed.

Terms/Definitions
Index distance: Distance conveyor travels from start to stop
Cycle: Total time On + Time Dwell

Required Inputs

<table>
<thead>
<tr>
<th>Device</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiate Index Switch</td>
<td>Stand-Alone Option</td>
</tr>
<tr>
<td></td>
<td>Externally-Controlled Option</td>
</tr>
<tr>
<td></td>
<td>PL2</td>
</tr>
<tr>
<td></td>
<td>terminal block - IN3</td>
</tr>
</tbody>
</table>

Required Parameter Settings

Home
(See “II. Programming the Homing Method” on page 44.)

Digital I/O

<table>
<thead>
<tr>
<th>Digital Input</th>
<th>Mode</th>
<th>Param</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN 3</td>
<td>2 - Start Motion Task</td>
<td>0</td>
<td>Act. High</td>
</tr>
</tbody>
</table>
Operation

Motion Tasks:
Cycle indexing requires two tasks:
• Motion Task 0 = Initiated by switch
• Motion Task 1 = Initiated by completion of Task 0

Motion Task 0
• Profile = Trapezoidal
• Type = Relative to previous target position
• Position = Index distance
• Velocity = Speed conveyor travels at
• Acceleration = rate conveyor gets up to speed
• Deceleration = rate conveyor slows down
• Following Task = 1
• Start Condition (checked) = Dwell Delay
• Dwell Time = sec

Motion Task 1
• Profile = Trapezoidal
• Type = Relative to command position
• Position = Index distance
• Velocity = Speed conveyor travels at
• Acceleration = rate conveyor gets up to speed
• Deceleration = rate conveyor slows down
• Following Task = 0
• Start Condition (checked) = Dwell Delay
• Dwell Time = sec

Operation
Reset Emergency Stop (STO) circuit
Enable drive
Apply “Initiate Index” signal to begin indexing
• Conveyor executes Motion Task 0
• At end of Motion Task 0, conveyor executes Motion Task 1
• At end of Motion Task 1, tasks dwell timer executes.
• When dwell time done, conveyor returns to Motion Task 0
• Cycle repeats until conveyor disabled
III. Absolute Index

Description
In this mode, a conveyor is commanded to move to a position relative to its homed position. A switch initiates the move.

Terms/Definitions
Index distance: Distance conveyor travels from home position.

Required Inputs

<table>
<thead>
<tr>
<th>Device</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiate Index Switch</td>
<td>Stand-Alone Option</td>
</tr>
<tr>
<td></td>
<td>Externally-Controlled Option</td>
</tr>
<tr>
<td></td>
<td>PL2</td>
</tr>
<tr>
<td></td>
<td>terminal block - IN3</td>
</tr>
</tbody>
</table>

Required Parameter Settings

Home
(See “II. Programming the Homing Method” on page 44.)

Digital I/O

<table>
<thead>
<tr>
<th>Digital Input</th>
<th>Mode</th>
<th>Param</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN 3</td>
<td>2 - Start Motion Task</td>
<td>0</td>
<td>Act. High</td>
</tr>
</tbody>
</table>

Motion Tasks:

• Task Number = 0
• Profile = Trapezoidal
• Type = Absolute
• Position = (Index Position)
• Velocity = Speed conveyor travels at
• Acceleration = rate conveyor gets up to speed
• Deceleration = rate conveyor slows down

Operation
Reset Emergency Stop (STO) circuit
Enable drive
Home conveyor (see “II. Programming the Homing Method” on page 44).
Apply “Initiate Index” signal to begin indexing. (Conveyor executes Motion Task.)
IV. Registration Index

Description
In this mode, a conveyor is commanded to move until a sensor detects a cleat, fixture, or edge of part. A switch initiates the move.

Terms/Definitions
Index distance: Distance conveyor travels from start to stop
Registration sensor: Sensor used to detect cleat, flight, marker, etc.
Registration distance: Distance conveyor travels after actuating registration sensor

Required Inputs

<table>
<thead>
<tr>
<th>Device</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiate Index Switch</td>
<td>PL2</td>
</tr>
<tr>
<td>Registration Sensor</td>
<td>PL4</td>
</tr>
</tbody>
</table>

Required Parameter Settings

Home
(See “II. Programming the Homing Method” on page 44.)

Digital I/O

<table>
<thead>
<tr>
<th>Digital Input</th>
<th>Mode</th>
<th>Param</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN 2</td>
<td>2 - Start Motion Task</td>
<td>1</td>
<td>Act. High*</td>
</tr>
<tr>
<td>DIN 3</td>
<td>2 - Start Motion Task</td>
<td>0</td>
<td>Act. High*</td>
</tr>
</tbody>
</table>

*See “III. Sensors” on page 30 for photosensor polarity considerations.

NOTE
For Dorner Photo Eye Kits set to Active Low.

Motion Tasks
Registration indexing requires two tasks:
- Motion Task 0 = Move greater than registration distance
- Motion Task 1 = Move greater than/equal to decel distance (usually 1/3 index distance)
Motion Task 0
- Task Number = 0
- Profile = Trapezoidal
- Type = Relative to command position
- Position = enter distance value greater than Index Distance
- Velocity = Speed conveyor travels at
- Acceleration = rate conveyor gets up to speed
- Deceleration = rate conveyor slows down
- Check Following Task box, Enter "1".
- Check Blend button.
- Select “Blend into Acceleration”

Motion Task 1
- Task Number = 1
- Profile = Trapezoidal
- Type = Relative to command position
- Position = registration distance (enter value greater than decel distance)
- Velocity = Speed conveyor travels at
- Acceleration = rate conveyor gets up to speed (enter same value as in Task 0)
- Deceleration = rate conveyor slows down

Operation
Reset Emergency Stop (STO) circuit
Enable drive.
Home conveyor (see “II. Programming the Homing Method” on page 44).
Apply “Initiate Index” signal to begin indexing:
- Conveyor executes Motion Task 0 until Registration Sensor turns on
- Conveyor then executes Motion Task 1, decelerating to a stop

V. Electronic Gearing

Description
In this mode a conveyor (Slave) follows another conveyor (Master) as though linked with a timing belt. This controller is for the Slave.

Terms/Definitions
Master Conveyor: Conveyor that Slave will follow
Slave Conveyor: Conveyor that is following Master
Master Encoder: Encoder mounted to Master conveyor

Required Inputs

<table>
<thead>
<tr>
<th>Device</th>
<th>Stand-Alone Option</th>
<th>Externally-Controlled Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activate Gearing Switch</td>
<td>N/A</td>
<td>terminal block - IN3</td>
</tr>
<tr>
<td>Master Encoder</td>
<td>N/A</td>
<td>connector X9*</td>
</tr>
</tbody>
</table>

*Wiring by user
Operation

Special Parameter Settings

Electronic Gearing

- In the toolbar, select 2 – Electronic Gearing (Figure 19, item 1) and 2 – Position Mode (Figure 19, item 2).
- Enter all required info about master encoder.

Figure 19

Home

(See “II. Programming the Homing Method” on page 44.)

Digital I/O

<table>
<thead>
<tr>
<th>Digital Input</th>
<th>Mode</th>
<th>Param</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN 3</td>
<td>16 - Activate Electronic Gearing</td>
<td>Act. High</td>
<td></td>
</tr>
<tr>
<td>DIN 4</td>
<td>5 - Start Home</td>
<td></td>
<td>Act. High</td>
</tr>
</tbody>
</table>

Motion Tasks

None required

Operation

Reset Emergency Stop (STO) circuit
Enable drive
Home conveyor (see “II. Programming the Homing Method” on page 44).
Apply “Activate Gearing” signal to begin Electronic Gearing
VI. Jog/Continuous Run

Description
In this mode a conveyor runs as long as the Jog input is on.

Terms/Definitions
Jog: Run continuously with positioning determined by Jog switch on/off.

Required Inputs

<table>
<thead>
<tr>
<th>Device</th>
<th>Stand-Alone Option</th>
<th>Externally-Controlled Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jog Switch</td>
<td>PL2</td>
<td>terminal block - IN3</td>
</tr>
</tbody>
</table>

Required Parameter Settings

Digital I/O

<table>
<thead>
<tr>
<th>Digital Input</th>
<th>Mode</th>
<th>Param</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN 3</td>
<td>6 - Start Jog</td>
<td>(velocity)</td>
<td>Act. High</td>
</tr>
</tbody>
</table>

Enter the Jog velocity (units/sec) in the Parameter field.

Motion Tasks
None required

Operation
Reset Emergency Stop (STO) circuit
Enable drive
Home conveyor (see “II. Programming the Homing Method” on page 44).
- Homing is not required to jog
Apply “Jog” signal to start conveyor
- Conveyor runs as long as signal is on
VII. Multi-Task Select

Description
In this mode multiple tasks (moves) can be selected.

Terms/Definitions
Multi-Task: Multiple tasks selected via three binary-coded inputs.

Required Inputs

<table>
<thead>
<tr>
<th>Device</th>
<th>Stand-Alone Option</th>
<th>Externally-Controlled Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Task Switch</td>
<td>N/A</td>
<td>terminal block - IN3</td>
</tr>
<tr>
<td>Binary Select 1 Switch</td>
<td>N/A</td>
<td>terminal block - IN4</td>
</tr>
<tr>
<td>Binary Select 2 Switch</td>
<td>N/A</td>
<td>terminal block - IN5</td>
</tr>
<tr>
<td>Binary Select 4 Switch</td>
<td>N/A</td>
<td>terminal block - IN6</td>
</tr>
</tbody>
</table>

Required Parameter Settings

Home
(See “II. Programming the Homing Method” on page 44.)

Digital I/O

<table>
<thead>
<tr>
<th>Digital Input</th>
<th>Mode</th>
<th>Param</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN 3</td>
<td>4 - Motion Task Start Selected</td>
<td>Act. High</td>
<td></td>
</tr>
<tr>
<td>DIN 4</td>
<td>3 - Motion Task Select Bit</td>
<td>Act. High</td>
<td></td>
</tr>
<tr>
<td>DIN 5</td>
<td>3 - Motion Task Select Bit</td>
<td>Act. High</td>
<td></td>
</tr>
<tr>
<td>DIN 6</td>
<td>3 - Motion Task Select Bit</td>
<td>Act. High</td>
<td></td>
</tr>
</tbody>
</table>

Enter the Jog velocity (units/sec) in the Parameter field.

Motion Tasks

NOTE
Motion task parameters to be set per application. See Index types on pages 12 through 17 for details.

Program up to eight different tasks. The input coding is as follows:

<table>
<thead>
<tr>
<th>Task No.</th>
<th>DIN 4</th>
<th>DIN 5</th>
<th>DIN 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>1</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>2</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>3</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>4</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>5</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>6</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>7</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>

Operation
Reset Emergency Stop (STO) circuit
Enable drive
Home conveyor (see “II. Programming the Homing Method” on page 44).
Turn on Input DIN 3 to initiate selected task.
2. Wiring Options

I. Stand Alone Controller, 75M-S1-x1-3

WARNING

Controller must be properly grounded. Failure to properly ground controller may cause injury to personnel.

DANGER

SEVERE HAZARD!
Hazardous voltage will cause severe injury or death. LOCKOUT POWER BEFORE WIRING.

Wiring Overview

The following depicts typical wiring for this control panel. Dorner accessories are shown.

NOTE

If no E-Stop is required, Jumper Plug 809-323 must be installed into PL1.
Operation

Wiring Steps
1. Connect motor power cable (Figure 21, item 1).

2. Connect motor feedback cable (Figure 21, item 2).
3. Mount Enable Switch with Index Push button station, Dorner P/N 75M-EN-1.
4. Locate and mount home Photo Eye Kit, Dorner 75M-PE-1. Connect to PL2 (Figure 21, item 3).

Cable kits for above:

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
</table>
| If longer cables are needed for kits, order:
| • 6 feet = Dorner P/N 75M-LC-1 |
| • 15 feet = Dorner P/N 75M-LC-2 |

5. Locate and mount registration photoeye, Dorner PN 75M-PE-1, or other as required. Connect to PL3 (Figure 21, item 4).
6. If emergency stop is required, mount Dorner Push Button Station 75M-ES-2, or other as required. Connect to PL1 (Figure 21, item 5). If no emergency stop is used, insert jumper into PL4 (Figure 21, item 6).
7. Do not plug in power cord at this time.
Base Wiring Diagram

This wiring must be completed for all applications/configurations. Minimum connections include input power (Figure 22, item 1), Emergency Stop (Figure 22, item 2), Enable (Figure 22, item 3), and Initiate (Figure 22, item 4).

Programmable Output Wiring (If Required)

Outputs are programmable. They may be used to signal the state of the servo drive to another machine, light an indicator, actuate a solenoid, etc. The Dorner default settings are:

- Digital Output 1 (DOUT) turns on when the motion task is complete
- Relay Output (ROUT) turns off when the drive is faulted.

Refer to Kollmorgen user manual for details.
Operation

Output Wiring, External Power

Use this diagram to isolate external controller power from Dorner control power. The outputs will be powered from the external controller’s power supply.

![Output Wiring - Customer's I/O Power](image)

Figure 23

Output Wiring, Internal Power

Use this diagram to isolate Dorner control power from external controller power. The outputs will be powered from the servo controller’s power supply.

![Output Wiring - Servo Controller's I/O Power](image)

Figure 24
II. Externally-Controlled, 75M-S2-x1-3

WARNING

Controller must be properly grounded. Failure to properly ground controller may cause injury to personnel.

DANGER

SEVERE HAZARD!
Hazardous voltage will cause severe injury or death. LOCKOUT POWER BEFORE WIRING.

Follow these diagrams if interfacing Dorner controller to PLC or other customer controls. It is highly recommended that the Home and Registration sensors are wired directly to the servo controller as shown in section “III. Sensors” on page 30. Drive inputs and outputs are pre-wired to the controller’s terminal strip. Their function is programmable. Refer to Kollmorgen user manual for details.

Wiring Overview

![Wiring Diagram](Image)

Figure 25
Operation

Base Wiring Diagram

This wiring must be completed for all applications/configurations. Minimum connections include input power (Figure 26, item 1), Emergency Stop (Figure 26, item 2), Enable (Figure 26, item 3), and Initiate (Figure 26, item 4).

Figure 26

Wiring Steps

1. Connect motion power cable. (See “Wiring Steps” on page 22.)
2. Connect motion feedback cable. (See “Wiring Steps” on page 22.)
3. If using Dorner Home Sensor. (See “Home to Sensor (External Initiate)” on page 43.)
4. If using Dorner Registration Sensor. (See “IV. Registration Index” on page 16.)
5. Connect inputs:
 a. If using internal control power for inputs, see “External Control, Internal Power” on page 29.
 b. If using external control power for inputs, see “External Control, External Power” on page 27.
External Control, External Power

1. Use this diagram to isolate external controller power from Dorner control power. The Home and Registration sensors (if used) will now also be powered from the external controller’s power supply. Connect Home and registration sensors as in section “III. Sensors” on page 30.
2. Remove the jumpers (Figure 28, item 1) indicated in the photograph below to isolate external controller power from servo controller power:
External Control, Internal Power

1. Use this diagram to isolate Dorner control power from external controller. The Home and Registration sensors (if used) will be powered from the servo controller’s power supply.

Figure 29
2. Add jumper from +V (Figure 30, item 1) to OUT + (output) (Figure 30, item 2).

III. Sensors

The servo control panel is wired and programmed for sensors that produce a sourcing (PNP) output. This output must utilize the black wire (pin 4) of any standard M12 cable.

Photosensors in Dorner accessory kits are light-operate, retro-reflective (output on when not blocked). When using Dorner photosensors, the polarity must be set to “Active Low” in the Digital Inputs menu (Refer to “6. Setting Digital Inputs and Outputs” on page 45.).

If using a photosensor that produces a signal when blocked, set the polarity in the Digital Inputs menu to “Active High” (Refer to “6. Setting Digital Inputs and Outputs” on page 45.).

The following is common to stand-alone and external-control models:

![Figure 30](image_url)

![Figure 31](image_url)
3. Establish Communications with the Drive

I. Configure the drive for the type of IP addressing

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotary switches S1 and S2 are set to 0 at the factory. The following information is provided for clarification purposes only.</td>
</tr>
</tbody>
</table>

To establish communication between the PC and the drive, you must first set the drive’s IP address rotary switches for the type of addressing you wish to use. The choices are Static or Dynamic (DHCP) IP addressing.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not apply power to the drive at this time.</td>
</tr>
</tbody>
</table>

Dorner recommends dynamic (DHCP) addressing. If static addressing is required, see the Kollmorgen manual for details.

II. Connect the Drive to the Programming PC

There are two connection options for establishing communication between the programming PC and drive - direct connection or network connection. There is a port on the side of the Dorner controller that allows connection to the drive without having to open the enclosure door.

Direct Connection

Use a standard Ethernet patch cable (straight) to form a connection between the PC and the drive. You can also use a crossover cable since the drive detects the cable type automatically.

Network Connection

Connect the drive and the PC to a network. The network must include a DHCP server (usually standard in corporate networks). If the network does not have a DHCP server, you can connect using a stand-alone router with a built-in DHCP server. In either case, both the PC and the drive acquire IP addresses automatically.
III. Configure the IP settings in the Programming PC

Dynamic IP addressing (DHCP):

Make sure the IP address rotary switches, S1 and S2, are set to zero.

Configure the PC for DHCP addressing:

In Windows, select Start>Control Panel>Network Connections. Choose the correct network connection for the port over which you will connect to the drive.

Right click on the connection and select Properties. Click on TCP/IP and then select Properties again. Configure the TCP/IP properties as shown below and click OK.

![Internet Protocol (TCP/IP) Properties](figure33.png)

Check the AKD address setting and make sure that S1 and S2 are set to zero.

The connection is now configured to establish a point-to-point direct connection between the AKD and the PC using WorkBench. You can now skip to “4. Run the Workbench Software” on page 34.

The drive will automatically acquire an IP address when Workbench software is activated. This process can take as long as a minute to complete.
IV. Check the PC’s Taskbar

While the PC is connecting, your taskbar will show the following acquiring icon designating connection in progress (Figure 34, item 1).

![Figure 34](image)

Wait for the drive connection complete icon (Figure 35, item 1) to change to the limited functionality icon (this process can take up to one minute).

![Figure 35](image)
Operation

4. Run the Workbench Software

I. Load the Workbench software onto the PC

Disk is set with controller or can be found on Kollmorgen website. Start the workbench software.

II. Power up the controller

Turn on the controller power.

III. Connect to the drive

Procedural Screens

a. The following window appears:

Click on **Connect** (Figure 36, item 1) under “1. Connect to the drive.” This process may take a few minutes.

NOTE

Make sure the programming cable is connected between the PC and programming port of the controller before you turn on controller power.

Figure 36
b. If multiple drives are detected, a drive can be uniquely identified using one of the following methods:

1. The MAC Address (Figure 37, item 1) of the drive. This is printed on the sticker on the side of the drive.
2. The Name (Figure 37, item 2) of the drive. The drive name is set using WorkBench. A new drive defaults to “No_Name.”
3. Blinking the display. Select a drive and click Blink (Figure 37, item 3) to force the display on the front of the drive to blink on and off for 20 seconds.

![Figure 37](image)

NOTE

Hint: If the IP Address next to the “Specify Address” box (Figure 37, item 4) is the same as the drive you wish to connect to, click on the box next to it. It will speed up the connection time greatly. If you can connect to the drive at this point, then skip section “IV. Configure the Parameters” on page 37.

4. Click on Connect (Figure 37, item 5).
IV. Configure the Parameters

NOTE

The Dorner Servo Control Package comes pre-loaded with the correct settings for the 2200 or 3200 Precision Move conveyor. The parameter settings shown on page 36 through 41 are all pre-set. The following information is provided for clarification purposes only.

a. Load pre-configured parameters
To load saved parameters into a drive for the first time, click on Tools in the menu bar. Select (drive name) > Load Parameter and then browse for parameter file to be loaded.

• Click on File
• Click on Open button.
• Click Save to Drive on toolbar

b. Confirm Parameter Settings
The following sections illustrates the pre-configured servo controller parameters. No changes should be required to these parameters. If alternate parameters are required, refer to the Kollmorgen factory literature for further details.

AKD Overview
Name: Give the drive a name in field (Figure 38, item 1) if it does not already have one.
Drive Model: Do not change field (Figure 38, item 2). When connected, this will fill in automatically.
The Dorner default model is AKD-P00306-NAAN-0000.
Operation

Settings

Command Source = 0 – Service (Figure 39, item 1)

Operation Mode = 2 – Position Mode (Figure 39, item 2)
Operation

Motor

Motor Name: **Select motor (Figure 40, item 1)** from list. The other fields will fill in automatically.

The Dorner default motor is **AKM-32E-ANCNC-00**.

![Figure 40](image)
Feedback

Feedback Selection (Figure 41, item 1): Select -1- Auto Identify. The controller will identify the feedback device.

Figure 41

Units

NOTE

The units are dependent on the mechanics of the conveyor and should not be changed from the Dorner settings without factory approval.
Standard Dorner Unit Parameters

NOTE

Enter values for callouts 4, 5, 6, & 7 first.

<table>
<thead>
<tr>
<th>Unit Parameter</th>
<th>For 3200 Series Precision Move</th>
<th>Bottom Drive For 2200 Series Precision Move</th>
<th>Flush Drive</th>
<th>Callout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Mechanics</td>
<td>Gear belt linear</td>
<td>Gear belt linear</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Motor</td>
<td>8</td>
<td>128</td>
<td>84</td>
<td>1</td>
</tr>
<tr>
<td>Load</td>
<td>1</td>
<td>36</td>
<td>36</td>
<td>2</td>
</tr>
<tr>
<td>Teeth/Turn</td>
<td>21</td>
<td>12</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Tooth =</td>
<td>2</td>
<td>254</td>
<td>254</td>
<td>10</td>
</tr>
<tr>
<td>Tooth =</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td>11</td>
</tr>
<tr>
<td>Position Unit</td>
<td>3 - Custom (mechanics dependent)</td>
<td>3 - Custom (mechanics dependent)</td>
<td>3 - Custom (mechanics dependent)</td>
<td>5</td>
</tr>
<tr>
<td>Velocity Unit</td>
<td>3 - Custom/s (mechanics dependent)</td>
<td>3 - Custom/s (mechanics dependent)</td>
<td>3 - Custom/s (mechanics dependent)</td>
<td>6</td>
</tr>
<tr>
<td>Acceleration Unit</td>
<td>3 - Custom/s² (mechanics dependent)</td>
<td>3 - Custom/s² (mechanics dependent)</td>
<td>3 - Custom/s² (mechanics dependent)</td>
<td>7</td>
</tr>
<tr>
<td>Custom Position Unit</td>
<td>in</td>
<td>in</td>
<td>in</td>
<td>4</td>
</tr>
</tbody>
</table>

Figure 42
Limits

Current Limits: Leave at default as determined by motor/drive combination.

NOTE

The Velocity, Position, and Acceleration limits are dependent on the mechanics of the conveyor and should not be changed from the Dorner settings w/o factory approval.

Standard Dorner Values:

<table>
<thead>
<tr>
<th>Spindle Package</th>
<th>Units</th>
<th>Velocity (units/sec)</th>
<th>Position Error (Units)</th>
<th>Acceleration Limits (units/sec²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td>Overspeed</td>
</tr>
<tr>
<td>all</td>
<td>inches</td>
<td>65</td>
<td>-65</td>
<td>65</td>
</tr>
</tbody>
</table>

Figure 43
5. Establishing your Homing Methods

There are many other homing routines. The type of conveyor application (see “I. Homing Methods” on page 42) dictates which type of homing sequence to use. Generally:

- A conveyor that moves a programmed distance and has cleats (flights), marks, locating holes, or fixtures will need to be homed to a sensor to establish a reference.
- A conveyor that moves until a sensor is activated (usually by a cleat, fixture, or part) does not require a home sensor. It is preferred to use the standard homing routine and execute an index command to justify the conveyor to the sensor.

I. Homing Methods

The Dorner Servo Control comes pre-packaged with several methods of homing. The following (2) methods are recommended and cover the majority of applications. For alternative methods, see the Kollmorgen manual.

Home to Sensor (Auto Initiate)

<table>
<thead>
<tr>
<th>Required Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
</tr>
<tr>
<td>Home Sensor</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Terms/Definitions

Home sensor: Sensor used to establish reference point

Required Parameter Settings

Home

- Type of homing motion = 4 – Find home input
- Acceleration = 5 in/sec²
- Deceleration = 5 in/sec²
- Direction = 0 – Negative or 1 – Positive
 (Direction conveyor travels to find sensor)
- Distance = in
 (offset conveyor will be from sensor at end of homing routine)
- Position = 0 in
- Velocity = 5 in/sec
- Set Auto Homing = 1 - Enabled

Digital I/O

<table>
<thead>
<tr>
<th>Digital Input</th>
<th>Mode</th>
<th>Param</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN 1</td>
<td>11 - Home Reference</td>
<td>Act. High*</td>
<td></td>
</tr>
</tbody>
</table>

*See “III. Sensors” on page 30.
Operation

Reset Emergency Stop (STO) circuit
Enable drive
Servo automatically executes homing sequence

Home to Sensor (External Initiate)

NOTE

This adds a “home to switch” feature to the conveyor. Useful when creating motion tasks relative to a reference point. An external switch initiates the homing sequence.

Terms/Definitions

Home sensor: Sensor used to establish reference point

Initiate Home switch: A switch that tells the controller to sequence through the homing routine.

Required Inputs

Device

<table>
<thead>
<tr>
<th>Device</th>
<th>Stand-Alone Option</th>
<th>Externally-Controlled Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiate Home Switch</td>
<td>N/A</td>
<td>terminal block - IN4</td>
</tr>
<tr>
<td>Home Sensor</td>
<td>N/A</td>
<td>PL3</td>
</tr>
</tbody>
</table>

Required Parameter Settings

Home

- Type of homing motion = 4 – Find home input
- Acceleration = 5 in/sec^2
- Deceleration = 5 in/sec^2
- Direction = 0 – Negative or 1 – Positive
- *(Direction conveyor travels to find sensor)*
- Distance = in
- *(Offset conveyor will be from sensor at end of homing routine)*
- Position = 0 in
- Velocity = 5 in/sec
- Set Auto Homing =
 - 0 - Disabled
 - *(Requires a signal to initiate Homing routine. Use DIN 4.)*

Digital I/O

<table>
<thead>
<tr>
<th>Digital Input</th>
<th>Mode</th>
<th>Param</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN 1</td>
<td>11 - Home Reference</td>
<td></td>
<td>Act. High*</td>
</tr>
<tr>
<td>DIN 4</td>
<td>5 - Start Home</td>
<td></td>
<td>Act. High*</td>
</tr>
</tbody>
</table>

*See “III. Sensors” on page 30 for photosensor polarity considerations

Operation

Reset Emergency Stop (STO) circuit
Enable drive
Apply “Initiate Home” signal to execute homing sequence.
II. Programming the Homing Method

The servo controller must be homed before any motion tasks can execute. The motor can be jogged without homing, however. The standard Dorner configuration is: Use current position.

For Home to Sensor Methods: Refer to the appropriate Homing Method Sheets to fill in the following data.

1. Fill in the **Select the type of homing motion you wish to use**: (Figure 44, item 1).
 - Evaluate each choice and decide which motion is best for the application.

2. Fill in the **Settings** (Figure 44, item 2) Values.
 - Use extreme caution. Severe damage to the equipment and/or load may result from incorrect values. Also, take note of which direction the conveyor should move to establish home. The conveyor may move one complete revolution to find the home sensor, so take precautions to prevent loads from being inadvertently discharged.

3. Select the homing initiation.
 - Another consideration to take into account is how the homing sequence is initiated. The sequence may be started automatically or by an external switch:
 - **Set Auto Homing**: (Figure 44, item 3):
 - **1- Enabled** (The conveyor will automatically Home after being Enabled.)
 - **0- Disabled** (Requires a signal to initiate Homing routine. Re-program unused digital input for signal (see “II. Programming the Homing Method” on page 44). Select DIN (X) = 5 – Start Home.)

4. Click **Save To Drive** (Figure 44, item 4).

NOTE

When not using the auto home feature, it is up to the end user to decide when to home the conveyor.

- After a power-up
- After resetting an E-Stopped condition
- After re-enabling the drive

Homing should be used to re-establish the reference point mechanically. Electronically, the servo drive will consider itself “homed” as long as the power to the drive is maintained.
6. Setting Digital Inputs and Outputs

1. Click on Digital I/O (Figure 45, item 1).

NOTE

The following chart illustrates the Dorner standard configuration.

<table>
<thead>
<tr>
<th>Digital Input</th>
<th>Mode</th>
<th>Param ***</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN 1</td>
<td>11 - Home Reference</td>
<td></td>
<td>Act. Low*</td>
</tr>
<tr>
<td>DIN 2</td>
<td>2 - Start Motion Task</td>
<td>1</td>
<td>Act. Low*</td>
</tr>
<tr>
<td>DIN 3</td>
<td>2 - Start Motion Task</td>
<td>0</td>
<td>Act. High</td>
</tr>
<tr>
<td>DIN 4</td>
<td>0 - Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 5</td>
<td>0 - Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 6</td>
<td>0 - Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN 7</td>
<td>0 - Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital Outputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOUT 1</td>
<td>3 - Move Complete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault Relay</td>
<td>0 - Fault Mode**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Refer to “III. Sensors” on page 30 for sensor wiring. Polarity settings may need to be changed dependent on your wiring method.

3. Refer to your Homing Method in “II. Programming the Homing Method” on page 44. Confirm the setting of the DIN1 and DIN4 based on your application.

4. Refer to your Application parameter method in “1. Determining your Application Parameters and Hardware Required” on page 12. Set parameter for DIN3 through 6 based on your application.

5. Click **Save To Drive** (Figure 45, item 2).

 *Note: For Dorner Photo Eye Kits, set to Active Low.
 **Relay is closed with no faults and opens when faulted.
 ***Note: Parameter inputs can not be entered until task has been created. Complete task and return to Digital I/O screen.
7. Loading your Motion Profile

I. Load Pre-Configured Tasks

After establishing communications, click on Import from File and browse for saved Task (.xml). After importing, click on Save Motion Tasks to Drive.

II. Customize Tasks/Start New

1. Select Motion Tasks (Figure 46, item 1) from the Navigation Tree.

2. Refer to your Application Parameter Method in “1. Determining your Application Parameters and Hardware Required” on page 12. Set your Motion Tasks Parameters based on your Application Method and the Calculated Motion Profile determined in “7. Loading your Motion Profile” on page 46. If application assistance is required contact factory.

3. Double click on task number (Figure 46, item 2) to get to this screen (below).

NOTE

Velocity values may be required to be entered as negative values to achieve the proper belt travel direction.
Figure 47

- **Profile:** (Figure 47, item 1) Usually Trapezoidal
- **Type:** (Figure 47, item 2) Per application (see “I. Homing Methods” on page 42).
- **Position:** (Figure 47, item 3) = distance to move
- **Velocity:** (Figure 47, item 4) = Speed conveyor travels at
- **Acceleration:** (Figure 47, item 5) = rate conveyor gets up to speed
- **Deceleration:** (Figure 47, item 6) = rate conveyor slows down

Rate Calculations

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
</table>

To create time-based moves, perform the following calculations:
- Velocity = (position ÷ time to move) x 1.5
- Acceleration/Deceleration = Velocity x 3

(Above is based on equally apportioned trapezoidal move with total acc/dec time = time at max V.)

4. When done, click on **OK** (Figure 47, item 7).
5. Return to digital I/O screen and enter Param: field as required.
6. Click on **Save to Drive** for changes to take effect.
Operation

8. Tuning the Gearmotor/Drive

NOTE

It is highly recommended to use Auto Tuning. For other tuning methods, refer to Kollmorgen user manual for details.

1. Select **Performance Servo Tuner** *(Figure 48, item 1)* from the Navigation Tree.

NOTE

In order to Auto Tune the servo the maximum position error limit must be temporarily increased. See page 41. Increase the limit to 10. After tuning is complete return the limit to 0.010.

2. Click on start tab *(Figure 48, item 2)* to start the tuning process.

NOTE

The servo gearmotor will run very loud and erratic during the tuning process. This is normal.

3. Once tuning is complete you will see a green light *(Figure 48, item 3)*. Return the Position Error Limit to factory settings as noted above.
9. Running your Application

WARNING

Controller must be properly grounded. Failure to properly ground controller may cause injury to personnel.

DANGER

SEVERE HAZARD!
Hazardous voltage will cause severe injury or death. LOCKOUT POWER BEFORE WIRING.

1. Confirm your conveyor is free from hazards and operators are clear.
2. Confirm your drive is enabled.
3. Initiate your motion profile per your application.
4. Test and confirm your application. The Kollmorgen Workbench software has extensive diagnostic tools such as stop, drive motions stators and faults and warnings. Refer to the Kollmorgen software and manual for details.

10. Save Application File

NOTE

It is highly recommended that a copy of the drive parameters be saved. This file can be re-loaded back to the drive in case of a problem.

1. Click on the parameter load/save toolbar
2. Click **Save to File**. Follow instructions for file location and name.
Preventive Maintenance and Adjustment

Required Tools
- Hex key wrenches: 2 mm, 2.5 mm, 3 mm, 5 mm
- Adjustable wrench (for hexagon head screws)
- Straight edge
- Torque wrench

Timing Belt Tensioning
(2200 Series)

1. Remove four M4 screws (Figure 49, item 1) and cover (Figure 49, item 2).

2. Loosen two M6 screws (Figure 50, item 1) to loosen belt position.

3. Use a hex wrench (Figure 51, item 1) to turn tensioner adjustment fitting (Figure 51, item 2) to tighten belt (Figure 51, item 3).

4. Depending on conveyor belt travel (direction A or B), locate timing belt tensioner (Figure 51, item 2) as shown. Tension timing belt to obtain 1/8” (3 mm) deflection for 6 lb (3 Kg) of force at timing belt mid-point (Figure 51, item 4). Tighten tensioner screw to 110 in-lb (12 Nm).

5. Install cover (Figure 49, item 1) with four (4) screws (Figure 49, item 2). Tighten screws to 14 in-lb (1.6 Nm).

WARNING
Exposed moving parts can cause severe injury. LOCK OUT POWER before removing guards or performing maintenance.
Timing Belt Replacement (2200 Series)

1. Remove four (4) screws (Figure 49, item 2) and remove cover (Figure 49, item 1).
2. Loosen two M6 screws (Figure 50, item 1) to loosen belt position.
3. Remove timing belt (Figure 52, item 1).
4. Install new timing belt.
5. Depending on conveyor belt travel (direction A or B), locate timing belt tensioner (Figure 51, item 2) as shown. Tension timing belt to obtain 1/8” (3 mm) deflection for 6 lb (3 Kg) of force at timing belt midpoint (Figure 51, item 4). Tighten tensioner screw to 110 in-lb (12 Nm).
6. Install cover (Figure 49, item 1) with four (4) screws (Figure 49, item 2). Tighten screws to 14 in-lb (1.6 Nm).

Drive or Driven Pulley Replacement (2200 Series)

1. Complete steps 1 through 3 of “Timing Belt Replacement (2200 Series)” on page 51.
2. Loosen two set screws (Figure 53, item 1) and remove driven pulley (Figure 53, item 2).

WARNING
Exposed moving parts can cause severe injury.
LOCK OUT POWER before removing guards or performing maintenance.

NOTE
If timing belt does not slide over pulley flange, loosen driven pulley set screws (Figure 52, item 2) and remove pulley with belt (Figure 52, item 1). For re-installation, see “Timing Belt Replacement (2200 Series)” on page 51 steps 3 through 8 on page 6.
Preventive Maintenance and Adjustment

NOTE

If drive pulley (Figure 54, item 2) is replaced, wrap timing belt around drive pulley and complete step 3.

3. To remove drive pulley, remove taper-lock screws (Figure 54, item 1). Insert one (1) of taper lock screws in remaining hole (Figure 54, item 2). Tighten screw until pulley is loose. Remove pulley and taper hub assembly.

![Figure 54]

4. Be certain key (Figure 54, item 3) is in place on shaft before installing drive pulley. Secure with two taper-lock screws (Figure 54, item 1).

5. Complete steps 4 through 6 of “Timing Belt Replacement (2200 Series)” on page 51.

Motor Replacement

2200 Series Motor

DANGER

Hazardous voltage will cause severe injury or death.
LOCK OUT POWER BEFORE WIRING.

1. Disconnect motor power connector (Figure 55, item 1) and feedback connector (Figure 55, item 2).

![Figure 55]

2. Remove four M4 screws (Figure 56, item 1) and cover (Figure 56, item 2).

![Figure 56]

3. Remove drive belt and drive pulley. See steps 1-3 in “Drive or Driven Pulley Replacement (2200 Series)” on page 51.

![Figure 56]
4. Remove four hex head screws (Figure 57, item 1), and remove motor (Figure 57, item 2) from mounting plate (Figure 57, item 3).

5. To install motor, mount with four hex head screws (Figure 57, item 1).

6. Install driven pulley (complete step 4 of “Drive or Driven Pulley Replacement (2200 Series)” on page 51).

7. Install and tension drive belt (complete steps 4 through 6 of “Timing Belt Replacement (2200 Series)” on page 51).

8. Install cover (Figure 56, item 2) with four (4) screws (Figure 56, item 1). Tighten screws to 14 in-lb (1.6 Nm).

3200 Series Motor

![WARNING]

Exposed moving parts can cause severe injury.
LOCK OUT POWER before removing guards or performing maintenance.

![DANGER]

Hazardous voltage will cause severe injury or death.
LOCK OUT POWER BEFORE WIRING.

1. Disconnect motor power connector (Figure 55, item 1) and feedback connector (Figure 55, item 2).

2. Remove cover from assembly (Figure 59, item 1).

3. Loosen six hex head screws (Figure 59, item 2) securing assembly onto shaft.
Preventive Maintenance and Adjustment

4. Remove socket head bolt (Figure 60, item 1) and nut on top of anti-rotation adjustable rod (Figure 60, item 2) securing motor to bracket (Figure 60, item 3).

5. Remove servo assembly (Figure 61, item 1) from shaft (Figure 61, item 2).

6. Install new servo assembly. Raise servo motor and rotate anti-rotation adjustable rod (Figure 62, item 1) fully upward, and then lower servo assembly.

7. Secure top of anti-rotation adjustable rod (Figure 62, item 1) onto bracket (Figure 62, item 2) on servo motor assembly with socket head bolt (Figure 62, item 3) and nut.

8. Tighten six hex head screws (Figure 63, item 1) to secure assembly onto shaft.

9. Install cover.
NOTE

For replacement parts other than those shown in this section, contact an authorized Dorner Service Center or the factory. Key Service Parts and Kits are identified by the Performance Parts Kits logo 🦁. Dorner recommends keeping these parts on hand.

2200 Series Bottom and Flush Mount Servo Drive Assembly

![Diagram of 2200 Series Servo Drive Assembly]

### Item	Part Number	Description
1 | 807-2092 | Lock Washer
2 | 807-2112 | Plug (Bottom Mount Only)
3 | 807-2286 | Plug
4 | 807-540 | Clamp Collar
5 | 811-542 | Bushing
6 | 811-547 | Drive Pulley, 36 Tooth
7 | 814-422 | Timing Belt, 5 mm - 25 mm - 475 mm
8 | 202372 | Mounting Plate
9 | 202373 | Plate Tensioner
10 | 202376-32 | Driven Pulley, 32 Tooth (Bottom Mount)
11 | 202376-21 | Driven Pulley, 21 Tooth (Flush Mount)
12 | 203053M | Pinion Gear
13 | 450376M | Drive Guard
14 | 605279P | Washer
15 | 920481M | Socket Head Screw, M4-0.70 x 8 mm
16 | 920510M | Socket Head Screw, M5-0.80 x 10 mm
17 | 920608M | Socket Head Screw, M6-1.00 x 8 mm
18 | 920612M | Socket Head Screw, M6-1.00 x 12 mm
19 | 920625M | Socket Head Screw, M6-1.00 x 25 mm
20 | 820-583 | Servo Gear Reducer 80 mm (Used with Servo Motor 826-621)
21 | 826-621 | Servo Motor
22 | 920592M | Socket Head Screw, M5-0.80 x 12 mm
Service Parts

3200 Series Side Mount Servo Drive Assembly

<table>
<thead>
<tr>
<th>Item</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>807-2067</td>
<td>Female Rod End</td>
</tr>
<tr>
<td>2</td>
<td>807-2088</td>
<td>Male Rod End</td>
</tr>
<tr>
<td>3</td>
<td>350170</td>
<td>Torque Arm (used with Gear Reducer 820-554)</td>
</tr>
<tr>
<td></td>
<td>350279</td>
<td>Torque Arm (used with Gear Reducer 820-555)</td>
</tr>
<tr>
<td>4</td>
<td>352317</td>
<td>Tube Spacer</td>
</tr>
<tr>
<td>5</td>
<td>920516M</td>
<td>Socket Head Screw, M8-1.00 x 16 mm</td>
</tr>
<tr>
<td>6</td>
<td>920895M</td>
<td>Low Head Cap Screw, M8-1.25 x 25 mm</td>
</tr>
<tr>
<td>7</td>
<td>920897M</td>
<td>Low Head Cap Screw, M8-1.25 x 35 mm</td>
</tr>
<tr>
<td>8</td>
<td>990801M</td>
<td>Hex Nut</td>
</tr>
<tr>
<td>9</td>
<td>820-554</td>
<td>Servo Gear Reducer 80 mm (Used with Servo Motor 826-621)</td>
</tr>
<tr>
<td>10</td>
<td>820-555</td>
<td>Servo Gear Reducer Nema 34</td>
</tr>
<tr>
<td></td>
<td>826-621</td>
<td>Servo Motor</td>
</tr>
</tbody>
</table>
Service Parts

Controller

<table>
<thead>
<tr>
<th>Item</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75M-S1-11-3</td>
<td>Stand Alone Controller, 115 volt</td>
</tr>
<tr>
<td>1</td>
<td>75M-S2-11-3</td>
<td>External Control Controller, 115 volt</td>
</tr>
<tr>
<td>1</td>
<td>75M-S1-21-3</td>
<td>Stand Alone Controller, 230 volt</td>
</tr>
<tr>
<td>1</td>
<td>75M-S2-21-3</td>
<td>External Control Controller, 230 volt</td>
</tr>
<tr>
<td>2</td>
<td>350127</td>
<td>Mounting Bars</td>
</tr>
<tr>
<td>3</td>
<td>639971MK10</td>
<td>Single Drop-in Tee Bar (x10)</td>
</tr>
<tr>
<td>4</td>
<td>920616M</td>
<td>Socket Head Screw, M6-1.00 x 16 mm</td>
</tr>
<tr>
<td>5</td>
<td>920610M</td>
<td>Socket Head Screw, M6-1.00 x 10 mm</td>
</tr>
</tbody>
</table>
Return Policy

Returns must have prior written factory authorization or they will not be accepted. Items that are returned to Dorner without authorization will not be credited nor returned to the original sender. When calling for authorization, please have the following information ready for the Dorner factory representative or your local distributor:

1. Name and address of customer.
2. Dorner part number(s) of item(s) being returned.
3. Reason for return.
4. Customer's original order number used when ordering the item(s).
5. Dorner or distributor invoice number (if available, part serial number).

A representative will discuss action to be taken on the returned items and provide a Returned Goods Authorization (RMA) number for reference. RMA will automatically close 30 days after being issued. To get credit, items must be new and undamaged. There will be a return charge on all items returned for credit, where Dorner was not at fault. It is the customer's responsibility to prevent damage during return shipping. Damaged or modified items will not be accepted. The customer is responsible for return freight.

Conveyors and conveyor accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Return Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard catalog conveyors</td>
<td>30%</td>
</tr>
<tr>
<td>MPB, 7200, 7300 Series, cleated and specialty belt</td>
<td>50%</td>
</tr>
<tr>
<td>AquaGard & AquaPruf Series conveyors</td>
<td>non-returnable items</td>
</tr>
<tr>
<td>Engineered to order products</td>
<td>case by case</td>
</tr>
<tr>
<td>Drives and accessories</td>
<td>30%</td>
</tr>
<tr>
<td>Sanitary stand supports</td>
<td>non-returnable items</td>
</tr>
</tbody>
</table>

Parts

<table>
<thead>
<tr>
<th>Item</th>
<th>Return Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard stock parts</td>
<td>30%</td>
</tr>
<tr>
<td>Plastic chain, cleated and specialty belts</td>
<td>non-returnable items</td>
</tr>
</tbody>
</table>

Returns will not be accepted after 60 days from original invoice date. The return charge covers inspection, cleaning, disassembly, disposal and reissuing of components to inventory. If a replacement is needed prior to evaluation of returned item, a purchase order must be issued. Credit (if any) is issued only after return and evaluation is complete.

Dorner has representatives throughout the world. Contact Dorner for the name of your local representative. Our Customer Service Team will gladly help with your questions on Dorner products.

For a copy of Dorner's Warranty, contact factory, distributor, service center or visit our website at www.dorner.com.

For replacement parts, contact an authorized Dorner Service Center or the factory.